
 
 

 

 

 
Abstract — In this paper, we propose a novel higher order 
sliding mode control used to solve the problem of chattering 
phenomenon related to the standard sliding mode controller. 
The proposed controller allows obtaining an exponential 
stability as well as a finite time convergence to the sliding 
surface and guarantees the robustness of the closed loop 
system against uncertainties and external matched 
disturbances. This algorithm is applied to control the speed, 
the angular position and the rotor flux of an induction motor. 
Numerical simulations are developed to show the efficiency 
and to evaluate the robustness of the proposed controller 
against external disturbances. 
 
Keywords — Nonlinear systems, robustness, higher order 
sliding mode control, asynchronous machine.  
 

I. INTRODUCTION 
The sliding mode control (SMC) has amply 

demonstrated its effectiveness through theoretical and 
practical studies. Its main areas of application include 
robotics and electrical machinery [4], [6]. Such control 
technique is well known by its robustness against external 
matched disturbances, parametric variations, modeling 
uncertainties and nonlinearities (hysteresis, friction, etc.) 
that often characterize dynamical systems. Indeed, SMC is 
able to overcome these barriers in regulation and tracking. 
The robustness property is achieved by using a high 
frequency switching to steer the states of a system into the 
sliding surface [16]. 
The high-frequency switching leads, generally, to the 
appearing of an undesirable chattering of the control input. 
As a result, a large energy is lost in electric actuators 
leading to a rapid wear of mechanical actuators [4]. To 
overcome this problem, several solutions have been 
proposed in the literature. Among them, we replace the “
sign ”function by the saturation function or the sigmoid 
function in order to obtain a smoother control signal [4]. 
Besides, fuzzy logic may be used together with SMC [14].  
The most interesting way to get rid of the chattering 
phenomenon consists of enforcing a higher-order sliding 
mode (HOSM). The main objective of SMC of order   

 
 

(called  -SMC) is to obtain a finite time convergence onto 

the manifold  ( 1) 0S s s s       , s is the sliding 
variable. So, the control acts on s  and its higher 
derivatives to force the sliding variable and its  -1 first 
time derivatives to zero in finite time [9]. 

In [10], authors proposed HOSMC that does not depend 
on the dynamics of the system and which guarantees the 
robustness of the closed loop system. Laghrouche et al. [8] 
developed a controller based on the minimization of a 
quadratic criterion using the concept of sliding mode 
control with integral action. This allows stabilizing in finite 
time a system of high order on the sliding surface. Besides, 
it permits to choose in advance the convergence time to the 
sliding surface. Although these algorithms are general, a 
priori accurate knowledge of the initial conditions of the 
system limit seriously the applicability of these approaches.  

Mondal et al. [13] proposed a second order sliding mode 
controller based on a nonlinear sliding surface to control 
uncertain linear systems with matched uncertainty. The 
stability of the nonlinear sliding manifold is guaranteed and 
the chattering of the control input is reduced. 

Recently, Defoort et al. [2]-[5] proposed a finite time 
HOSMC for a class of multivariable nonlinear systems. In 
such work, authors remove the drawbacks devoted in [8] 
and presented a method used to stabilize in finite time the 
higher order input output dynamic system with bounded 
uncertainties. The most advantage of this control strategy 
consists to obtain smooth states trajectories of the system 
around the sliding surface and this control technique can 
give a simple relationship between the synthesis parameters 
of the control and the desired performances desired in 
closed loop. However, this technique of higher-order 
sliding mode control contains necessarily a discontinuous 
part to reject the effect of disturbances. Its design requires 
the knowledge of the maximum amplitudes of the 
disturbances acting on the system. This approach ensures 
an asymptotic stability.  

In this paper, we presented a new technique of HOSMC, 
and we demonstrated its exponential stability and 
robustness against external matched disturbances, 
parametric variations and modeling uncertainties.  
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The induction motors (IM) is widely used in industry, 
this is mainly due to its rigidness. Also, its maintenance is 
free operation, and relatively low cost. Moreover, induction 
motors constitute a theoretically challenging control 
problem since the dynamical system is nonlinear. The 
technique of vector control by indirect field oriented 
applied to induction motors permitted to have better 
performances comparable to a DC motor. Nevertheless, it is 
very sensitive to parametric variations and external 
disturbances. To solve this problem, we present in this 
paper an application of the novel robust higher order sliding 
mode control to the model of IM. Simulations results 
developed in this work show the effectiveness of the 
proposed HOSMC and the simplicity of adjustment of the 
synthesis parameters of the control law to achieve the 
desired performances in closed loop. 

This paper is organized as follows. The next section is 
devoted to the problem formulation. In section 3, we 
proposed the new HOSMC and we focus on the main 
contribution of the paper. In section 4, we presented a 
model of induction motor. The simulations results are given 
in section 5. Conclusions are reported in the last section of 
the paper. 

II. PROBLEM FORMULATION 
Consider a nonlinear dynamical system described by the 
following equation 

                         
 

, ,

,

x f x t g x t u p t

s s x t

  


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where  1 , ..., T
nx x x X   is the state variable of the 

system with  X an open set of n  and u U  the control 
input is a feature possibly discontinuous and bounded, 
depending on time and the system state, with U is an open 
set  , ( , )f x t  and ( , )g x t  are sufficiently differentiable 
vector fields and   np t  is an additive perturbation. 

Assumption 1. System (1) admits a N   constant and 
known relative degree with respect to the sliding variable 
 ,s x t . 

The system (1) can be written as follows: 

           

   

1 2

2 3

1

, ,

z z
z z

z z

z x t x t u
 

  


 





 
  









                (2) 
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where  1
1 2

TT
z z z z s s s 


        , 

 and   are nominal known parts,  and   are 

unknown parts, including disturbances and uncertainties. 
Assumption 2. The nominal part   is assumed invertible. 
The objective of the different techniques of higher order 
sliding mode control is to obtain a finite time convergence 
onto the manifold  ( 1) 0S s s s       .To achieve 

such goal, we propose a new technique of HOSMC. 

III. HIGHER ORDER SLIDING MODE CONTROLLER 
Consider a chain of integrators, defined by  
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To stabilize the system (3) in finite time on S  , we propose 
the following control law. 
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with      
0  ,  0 1ia i    ,  0 1ib i     and the 

polynomial   1
1 2P x a a x a x 


     is Hurwitz.  

Now consider the control law  
    1u w z                          (5)   

where  and   are obtained according to (2) and  w z  is 

given by (4). 
Theorem : The controller (5) ensures a sliding mode of 
order   with respect to  ,s x t  provided that assumptions 
(2) and (3) are verified. 
Proof.  
Equation (4) can be written as follows 
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
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The Laplace Transform applied to (6) gives 
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As   1

1 2P p a a p a p 


     is Hurwitz, the solution 

of (6) is stable. 
proof of the convergence of 
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the zero vector of   .  
Assume that the states of system are not in the manifold 
S  . One has 

   
 
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       (9) 

In other words, one obtains 
 

1 1 1 2 2z a z a z a z                        (10) 

with 
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0 ;

b z b z b z
t
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So, (10) is assumed a linear differential equation with 
second member. The equation without second member is 
given by 

1 1 2 2 0a z a z a z                       (11) 

The roots of the polynomial  P p  have a strictly negative 

real part. So, the polynomial  P p which is given by 

  1
1 2P p a a p a p 


                  (12)

 

can be rewritten as follows 

     i
11
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with i  are the roots of the polynomial  P p with 

multiplicity degree i . 
Therefore, the homogeneous solution of (10) is of  the form 
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1

i

r
t

i
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z t q t e



                   (13) 

with  iq t  are polynomials of degree 1i  . 

Also, one notes that the null function  1 0z   is a solution 
of the equation (10). Indeed if 1 0 ;z t   ,  0 ; t   . 
So, one can take it as a particular solution of (10). 
Consequently, the general solution of (10) is given by 
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1

i

r
t

i
i

z t q t e



                   (14) 

The coefficients of  iq t  are fixed using initial conditions. 

So the  ( 1)
1 1i

iz z i     converge exponentially to 

zero of  whatever the initial conditions are chosen. 
Proof of robustness  
Suppose that the control is affected by the disturbances as 
follows 
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                                                                                    (15) 
where 1z z     ,  1p t  and  2p t are two bounded 

disturbances. 
Equation (15) can be rewritten as follows 

      1 1 2 1 1 2 2p t z p t a z a z a z           (16) 

The homogeneous solution of the equation (16) takes the 
form 
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and 1 0z   is a particular solution of (16). So the general 
solution of (16) is given by 
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So,  ( 1)
1 1i

iz z i     converge exponentially to zero 

of   . Therefore, the proposed controller ensures the 
robustness against bounded disturbances. 
Now, consider system (2) which can be rewritten as 
follows: 
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 with       
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The functions  ,x t  and  ,x t  may include the 

uncertainties of the system.  
Assumption 3. The functions  ,x t and  ,x t are 

bounded. In addition, there is a positive function  a x and 
b a positive constant 0 1b  , such that: 
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Using  (15), one has 
      , 1 ,z x t x t w z              (19) 

If  Assumption (3) is verified, one can write (19) as follows 
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Now, applying our approach (15) to (20) one obtains 
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(21) 
with 
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     1
1 1 ,p t x t


                      (22) 

 

      1
2 1 , ,p t x t x t 


              (23) 

Now, using the proof of robustness presented above, one 
can conclude that the control law (4) allows to stabilize 
exponentially the uncertain system (1) on the sliding 
surface in finite time.  
 
Remark : To implement the controller (4), a finite time 
differentiator  is used to estimate the successive derivatives 
 ( 1), , ,s s s     of  the sliding variable  s  [11]. 

IV. MATHEMATICAL MODEL OF THE INDUCTION MOTOR 
The modeling of the induction machine described in the 
repository Park is given in the following system of 
equations [1], [7], [12], [15]. 
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where rR and sR are rotor and stator resistances, rL and 

sL are rotor and stator inductances, srL is the mutual 
inductance,   is the rotor position,   is the rotor angular 
velocity, p  is the number of pole pairs, J  is the inertia of 
the rotor, f is the coefficient of viscous friction, rC  is the 
load torque, rd  is the rotor flux linkage,  sdi and sqi stand 
for the d-q axis currents, sdu and squ are the d-q axis 

voltages, 
2

1 sr

s r

L
L L

   , is the dispersion coefficient of 

Blondel, sr
em rd sd

r

pLC i
L

 is the electromagnetic torque 

and sr r
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r rd

L Rp i
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 
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 

. 

 
One can remark that the model of the IM (24) can be 
written in the form (1) with  
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V. APPLICATION TO THE ASYNCHRONOUS MACHINE 

A. Control of Speed and Rotor flux 
In this section, the control objective is to apply an output 
feedback control scheme ensuring a higher order sliding 
mode in order to enforce the rotor angular velocity  and 
the rotor flux linkage rd , to track a desired trajectory ref
and rd ref . So, we consider the following sliding variable 
 

1

2

ref

rd rd ref

s
s

s
 
 

  
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                   (25) 

As the relative degree of the system with respect s  is 
2   a 2-SMC can be designed. So, the second time 

derivative of the sliding variable is given by: 
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with 
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where 

  1

2

0
,

0
x t





 

  
 

 with 
1 2;sr sr r

rd
s r s r

pL L R
L L J L L

  
 

   

0 0
0 0
 

  
 

and 0
0
 

  
 

 

 
Applied to the model of the induction motor, the higher 
order sliding mode control (4) is given by:   

 1sd

sq

u
u w z

u
  

      
 

 

with 

   
 

 
 
 
 

11 1,1 21 2 ,1
1

11 1,1 21 2,11 1

2 2 12 1,2 22 2,2
2

12 1,2 22 2,2

a z a z

b z b zw z
w z

w z a z a z

b z b z





 
 

  
    

  
 

  

 

 

   
 

3
1,1 2,15

1 1
1,1 2,1

800 10
2 10

z z
w z

z z

  
   


 

 
obtained for  5

1 2 10   , 11 800a  , 3
21 10a  , 11 1b 

and 21 1b  .  
 

   
 

1,2 2,24
2 2

1,2 2,2

2,15
10

10

z z
w z

z z

 
  

 
 

 

obtained for  4
2 10  , 12 2,15a  , 22 1a  , 12 10b  and 

22 1b  .  
where  

 
 

1,1 2,1 1 11

2 2 21,2 2,2

T T

TT

z z s sz
z

z s sz z

                        




 

 
For this application, we assume 0ref   and 0rd ref   

First, we consider the case where noises are absents. So the 
load torque   0rC t  .  

Simulation results plotted on figures (1)-(3), show that 
control objective is fulfilled using this algorithm.  

 
Fig. 1. Tracking performances without noises, (a)   and ref , (b)  

1 1 refz s     . 

 
Fig. 2. Tracking performances without noises, (a) rd  and rd ref , (b) 

sliding surface 1 2z s  and 2 2z s  .  
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Fig. 3. Controls signals and the stator currents without noises 

Now, we consider that our system is affected  by  external  
disturbance. So, the load torque varies randomly as plotted 
on figure 4. Simulations results depicted on figures (5)-(7) 
show the robustness of this technique of control against 
external disturbances.  

 
Fig. 4. Evolution of  the Load torque rC . 

 
Fig. 5. Tracking performances under disturbances, (a)   and ref , (b)  

1 1 refz s     . 

 
Fig. 6. Tracking performances under disturbances, (a) rd  and rd ref , 

(b) sliding surface 1 2z s  and 2 2z s    

 
Fig. 7. Controls signals and the stator currents under disturbances. 

 

B. Control of  the position and the rotor flux 
In this part, the objective is to design a 3rd order SMC to 
enforce the rotor angular position   to track a desired 
trajectory ref and to develop 2nd order SMC to drive the 
rotor flux linkage rd  to track a desired trajectory rd ref . 
So, we consider the following sliding variable 
  

1

2

ref

rd rd ref

s
s

s
 

 
  

        
                   (27) 

 

    1

2

, ,
s

x t x t u
s

 
 

  
 




 

So according to the expression of the matrix  ,x t , the 
input control 1 sdu u  depend only on 2s  and its first 
derivatives. Besides, 2 squ u  depend only on 2s , 2s  and 

2s , Consequently, the control law applied to the IM is 
given by. 
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 1sd
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u
  

      
 

 

with 

   
 

 
 

 
 

11 1,1 21 2,1 31 3,1
1

11 1,1 21 2 ,1 31 3,11 1

2 2 12 1,2 22 2,2
2

12 1,2 22 2,2

a z a z a z

b z b z b zw z
w z

w z a z a z

b z b z





  
 

   
    

  
 

  

 

where 

   
 

1,1 2,1 3,14
1 1

1,1 2,1 3,1

20 2000 0, 5
9, 5 10

3000 48, 5

z z z
w z

z z z

    
   

   
 

obtained for  4
1 9, 5 10   , 11 20a  , 21 2000a  , 

31 0,5a  , 11 3000b  , 21 48, 5b  and 31 1b  .  
and  

   
 

1,2 2,24
2 2

1,2 2,2

2,15
10

10

z z
w z

z z

 
  

 
 

obtained for  4
2 10  , 12 2,15a  , 22 1a  , 12 10b  and 

22 1b  .  
where  

 
 

1,1 2,1 3,1 1 1 11

2 2 21,2 2,2

T T

TT

z z z s s sz
z

z s sz z

                        

 


 

First, we consider the load torque   0rC t  . Simulation 

results plotted on figures (8)-(10) show that the control 
objective is fulfilled using the proposed HOSMC. Besides, 
we note on figure 9 that the new controller of the rotor 
angular position   minimizes considerably the chattering 
phenomenon on speed error 2 ,1z .  Moreover, we show on 

figure 11 that the rotor angular position controller improve 
the control signal applied to the system.  

 
Fig. 8. Tracking performances without noises, (a)   and ref , (b)  

1 1 refz s     . 

 
Fig. 9. Tracking performances without noises, (a)   and ref , (b)  

2 1 refz s     . 

 
Fig. 10. Tracking performances without noises, (a) rd  and rd ref , (b) 

sliding surface 1 2z s  and 2 2z s  . 

 
Fig. 11. Controls signals and the stator currents without noises 

Now, we consider that the IM is affected  by an  external  
disturbance. So, the load torque varies randomly and it is 
presented on figure 4. 
Simulations results depicted on figures (12)-(15) show the 
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robustness of the proposed approach against external 
disturbances. 

 
Fig. 12. Tracking performances under disturbances, (a)   and ref , (b)  

1 1 refz s     . 

 
Fig. 13. Tracking performances under disturbances, (a)   and ref , (b)  

2 1 refz s     .

 
Fig. 14 Tracking performances under disturbances, (a) rd  and rd ref , 

(b) sliding surface 1 2z s  and 2 2z s  . 

 
Fig. 15. Controls signals and the stator currents under disturbances. 

 
 

VI. CONCLUSION 
In this work, we have proposed a novel robust high-order 
sliding mode controller for a class of nonlinear uncertain 
systems. The proposed controller provides for an 
exponential stability of the closed loop system. 
Furthermore, we have applied this approach to the model of 
an induction motor. Simulation results show the high 
performances and the robustness of such control strategy 
against external matched disturbances.  

NOMENCLATURE 
 
Table 1: Characteristics and parameters of induction motor  

 
Nominal 
puissance 

1.5 KW Rs 8 

Voltage 220/380 V Rr 4 

Nominal 
current 

6.4/3.7 A Ls 0.47 

Number of 
pole pair 

P=2 Lr 0.47 

Frequency  50 Hz Lsr 0.44 

rated speed 1410 
tr/min 

J Kg m2 J=0.04  

Factor of 
puissance 

0.83 f  N msec/rad f=0.002 
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